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Abstract 

The main focus of this study is to develop a dynamic-coupling “inline” air quality modeling system for the 

meteorology-induced emissions with simulated meteorological data. To improve the spatiotemporal 

representations and accuracy of onroad vehicle emissions, which are largely sensitive to local meteorology, 15 

we developed the “inline” coupler module called “MetEmis” for Meteorology-Induced Emission sources 

within the Community Multiscale Air Quality (CMAQ) version 5.3.2 modeling system. It can dynamically 

estimate meteorology-induced hourly gridded emissions within the CMAQ modeling system using modeled 

meteorology. The CMAQ air quality modeling system is applied over the continental U.S. for two months 

(January and July 2019) for two emissions scenarios: a) current “offline” based onroad vehicle emissions, 20 

and b) “inline” CMAQ-MetEmis onroad vehicle emissions. Overall, the “MetEmis” coupler allows us to 

dynamically simulate onroad vehicle emissions from the MOVES onroad emission model for CMAQ with a 

better spatio-temporal representation compared to the “offline” scenario based on static temporal profiles. 

With an instance interpolation calculation approach, the new “inline” approach significantly enhances the 

computational efficiency and accuracy of estimating mobile source emissions, compared to the existing 25 

“offline” approach that yields almost identical hourly emission estimation. The domain total of daily VOC 

emissions from the “inline” scenario shows the largest impacts from the local meteorology, which is 

approximately 10% lower than the ones from the “offline” scenario. Especially, the major difference of VOC 

estimates was shown over the California region. These local meteorology impacts on onroad vehicle 

emissions via CMAQ-MetEmis revealed an improvement in hourly NO2, daily maximum ozone, and daily 30 

average PM2.5 patterns with a higher agreement and correlation with daily ground observations. 

 

Keywords: CMAQ, CTM, weather-aware emissions, vehicle emissions, inline modeling 

1. Introduction 

Since the industrial revolution, the chemical pollutants in the atmosphere have impacted human society due 35 

to their adverse health effects. The primary gases and particles directly emitted from their emission sources 

are chemically transformed into secondary pollutants through complex chemical reactions under various local 

meteorological conditions.  Over last three decades, sophisticated multiscale chemical transport models 

(CTM) have been developed to predict the concentrations of primary and secondary chemicals in the lower 
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atmosphere, and actively used for air quality regulatory planning applications as well as for air quality 40 

forecasting for the general public health (Wong et al., 2012; Byun and Schere, 2006; Dennis et al., 2010; Rao 

et al., 2011; Hogrefe et al., 2001). The CTM simulation results strongly rely on two major inputs: 

meteorology and emissions, thus requiring accurate estimation of both to simulate the transport, chemical 

transformation, and removal of the pollutants. Depending on their chemical reactivity and gravitational 

behaviors, some pollutants can be chemically transformed and travel a long distance from their source of 45 

origin while some are deposited near their release locations. 

To accurately predict regional and global chemicals in the future, spatially and temporally resolved 

meteorology and emissions are critical and required to be rapidly updated based on the aerosol direct/indirect 

meteorology impacts within a fully coupled air quality modeling system. There have been considerable 

amounts of efforts in meteorology prediction enhancements actively conducted (Jacob and Winner, 2009; 50 

Grell and Baklanov, 2011; Fiore et al., 2012; Wong et al., 2012). However, there have been only limited 

“inline” emissions modeling enhancements made to CTM system wherein emissions from meteorologically 

driven air pollutant emission processes are dynamically coupled within the regional/global CTM modeling 

system, rather than being estimated a priori and statically provided as model inputs based on “offline” spatial 

and temporal allocations. Simulating emissions “inline” is especially crucial for real-time air quality 55 

forecasting (Tong et al., 2012). In particular, the system of the National Oceanic and Atmospheric 

Administration (NOAA) National Air Quality Forecast Capability (NAQFC) allows to induce the influences 

of the forecast meteorology on emissions from key sources, such as stationary power plants, vegetation, 

fertilizer applications, such as mineral dust (Knippertz and Todd, 2012), sea salt (Foltescu et al., 2005; Pierce 

and Adams, 2006), biogenic volatile organic compounds (BVOCs) (Lathière et al., 2005; Chen et al., 2018), 60 

and biomass burning events (Grell et al., 2011; Pavlovic et al., 2016). Despite these scientific advancements 

and model improvements, true process-based interaction between local meteorology and meteorology-

induced anthropogenic pollutant emissions from onroad vehicles, livestock wastes, and residential heating 

remain incomplete or overlooked (Pouliot, 2005; Tong et al., 2012).  

The mobile/transportation sector is one of the most important anthropogenic emissions sectors in 65 

metropolitan regions where most of high ozone and PM2.5 concentration episodes often occur (Andrade et al., 

2017; Kumar et al., 2018; Perugu, 2019). It is also known that the performance and emissions of mobile 

engines are sensitive to local weather conditions, such as ambient temperature and humidity (Lindhjem et al., 

2004; Iodice and Senatore, 2014; Choi et al., 2017; Mellios. et al., 2019). The incomplete fuel combustion 

can be occurred under cold ambient temperature and high humidity, leading to higher emissions emitted. The 70 

effect of humidity on internal combustion engines, including spark-ignition engines (gasoline, LPG, and 

natural gas) and compression ignition or diesel engines, has been known for many years, with evidence 

indicating that higher humidity results in lower NOx emissions(Lindhjem et al., 2004; USEPA, 2015). 

Additional emissions also come from energy usage of air conditioning at higher ambient temperatures. These 

meteorological impacts can be accounted for using the state-of-science mobile emissions models such as the 75 

U.S. EPA’s MOtor Vehicle Emission Simulator (MOVES) version 3.0 (USEPA, 2020). However, it lacks 

transparency of air pollutant emission algorithms, including key parameters such as emission factors. 

Furthermore, it requires significant computational resources to generate these high-quality spatiotemporal 

emissions from onroad vehicles (Li et al., 2016; Xu et al., 2016; Liu et al., 2019; Perugu, 2019). To provide 

the weather-aware onroad mobile emissions to the current CMAQ, the MOVES has been integrated with the 80 

Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system (Baek et al., 2010) by processing 

(reading/storing/accessing) MOVES emission factors (EF) datasets. However, it demands a significant 

computational time and memory due to the high traffic of input/output (I/O) data, which largely prohibits its 
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usage in real-time air quality forecasting. As an example, the latest version of SMOKE version 4.8.1 can 

require >3 computing hours with up to 20GB RAM memory to generate 25 hours CMAQ-ready gridded 85 

hourly emissions over Continental U.S. (CONUS) modeling domain (12km *12km grid size).  

To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system 

without any computational bottleneck, we have developed an “inline” meteorology-induce emissions coupler 

module within the US EPA’s CMAQ modeling system, called “Meteorologically-induced anthropogenic 

Emissions: CMAQ-MetEmis”, to dynamically model the complex MOVES onroad mobile emissions inline 90 

without a separate dedicated emissions processing model like SMOKE. To address the shortcomings 

(computational time and memory requirements) in the current slow “offline” approach, we first re-

restructured the current CMAQ-ready surface gridded hourly emissions output from SMOKE into the 

ambient temperature-specific gridded hourly emissions and store them into a pseudo-layer structure for easy 

and fast access. Each pseudo-layer holds the gridded chemically-speciated hourly emissions by incremental 95 

temperature bin (e.g., 10F, 20F, and so on).  The CMAQ-MetEmis coupler was developed to estimate the 

gridded hourly emissions with a simple linear interpolation between two temperature-bins gridded hourly 

emissions based on a simulated hourly ambient temperature. With an instance interpolation calculation 

approach, the new “inline” approach significantly enhances the computational efficiency compared to the 

existing “offline” approach without losing any accuracy of emission estimates. We also evaluate the 100 

performance of the CMAQ-MetEmis coupler module in CMAQ which includes their computational 

performance, the feasibility of CMAQ-MetEmis implementation as a forecasting application, the responses 

of O3 and PM2.5 to the meteorological impacts on anthropogenic emissions. 

2. CMAQ-MetEmis Development 

NOAA has developed the NAQFC, operated by the National Weather Service (NWS), in partnership with 105 

the U.S EPA using the state-of-science air quality modeling system, CMAQ, to forecast concentrations of O3 

and PM2.5 over the contiguous continental U.S. (CONUS), Alaska and Hawaii (Tong et al., 2015; Lee et al., 

2017; Tang et al., 2017). Unlike weather forecasting, air quality forecasting requires full atmospheric 

chemistry along with the physical state and tendency of the weather in the near future. Accurate prediction 

of meteorology and emissions for CMAQ plays a critical role in the accuracy of 48- and 72-hour air quality 110 

forecasting. The current NOAA/NWS operational requirements specify that the post-processing of the 

simulated/forecasted meteorological data, emission data, and air quality chemistry model simulations be 

completed in a reasonable time frame to meet the air quality forecasting time constraints.  Since the 

processing of the meteorological data and the execution of the air quality chemistry model are the most time-

consuming part of CMAQ, minimizing the processing time of the emissions needs is desirable. A typical 115 

emission-processing over U.S. CONUS national domain for one day may take up to 2 hours on a single CPU 

(Intel Xeon Gold 6240R @ 2.4GHz) using SMOKE and other post-processing tools. To expedite the 

operational forecasting streamlines, non-meteorological dependent emissions are generally processed in 

advance (Tong et al., 2015). Only the meteorologically induced emission sources are processed during the 

air quality forecasting simulation runs. So then, the accuracy of the emission processing can be maintained, 120 

and the forecast can be completed within the required time constraints. However, due to the high computing 

CPU hour requirement to estimate the high-quality onroad mobile emissions from MOVES, the SMOKE-

MOVES integration tool that allows dynamically estimating weather-aware gridded hourly emissions with 

the forecast meteorology from NAQFC has not been implemented in the current NAQFC operations (Tong 

et al., 2015). 125 
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2.1 Modeling Configuration 

The George Mason University (GMU) air quality modeling system in this study is configured close to the 

current operational NAQFC, including the spatial coverage, emission inputs, and chemical transport model. 

It contains three major components: meteorology, emission, and chemical transport models.. The Weather 130 

Research and Forecasting (WRF) model version 4.0 is used to generate hourly meteorological fields to drive 

emission and air quality modeling. The WRF model was configured with Thompson graupel microphysics 

scheme, RRTMG long and short-wave radiation scheme, Mellor-Yamada-Janjic PBL scheme, unified Noah 

land-surface model, and Tiedtke cumulus parameterization option. The emission input was provided using a 

hybrid emission modeling system that utilized the SMOKE model version 4.8.1 (Baek and Seppanen, 2021) 135 

to process anthropogenic emissions, and a suite of emission models to estimate emissions from intermittent 

and/or meteorology-dependent sources. Anthropogenic emissions were taken from US EPA 2017 NEI. The 

CMAQ model (version 5.3.2) ingests emissions and meteorology to predict spatial and temporal variations 

of the atmospheric pollutants (such as O3, NO2, and particulate matters) using a revised Carbon Bond 6 gas-

phase mechanism and AE7 aerosol mechanism (CB6r3_AE7_AQ) (Byun and Schere, 2006; Luecken et al., 140 

2019).  

The meteorological, emission and air quality models have 12×12 km horizontal resolution over the 

contiguous United States, with full 35 sigma layers vertically and the domain top at 50 hPa. The WRF model 

was driven by the forecast fields of Global Forecast System (GFS) version 4 products with a horizontal 

resolution of 0.25° × 0.25° (available every 6 h) and was reinitialized every 24 hr to be consistent with its 145 

operational task. 

To understand the impacts of meteorology-induced onroad emissions on local air quality, we conducted two 

CMAQ simulation scenarios. All simulations were conducted for two months, January and July in the year 

2019. We initiated our CMAQ simulations based on the default CMAQ background concentration profiles. 

The first three days of CMAQ simulation were used as a spin-up modeling period to eliminate the influence 150 

of the initial condition (Chen et al., 2021; Lv et al., 2018; Tong and Mauzerall, 2006).  The configurations 

and simulations are listed in Table 1. 

 

1. “Base” scenario: Static gridded hourly emissions based on the county total emissions with static 

temporal profiles (monthly, weekly, month-to-day, and hourly). 155 

2. “MetEmis” scenario: Weather-aware gridded hourly emissions dynamically simulated with simulated 

meteorology using the inline “CMAQ-MetEmis” approach. 

 

2.2 Meteorology-Depended Mobile Emissions 

Mobile emissions from onroad and off-network (e.g., vehicle start-up, running exhaust, break-tire wear, hot 160 

soak, and extended idling) are much sensitive to temperature and humidity due to various factors, 1) cold 

engine starts that enhance emissions at lower ambient temperatures due to the incomplete fuel combustion, 

2) evaporative losses of volatile organic compounds (VOCs) due to expansion and contraction caused by 

ambient diurnal temperature variations, 3) enhanced running emissions at higher ambient temperatures, 4) 

atmospheric moisture suppression of high combustion temperatures that lower nitrogen oxide emissions at 165 

higher humidity, and 5) indirect increased emissions from air conditioning at higher ambient temperatures 

(Choi et al., 2017; Iodice and Senatore, 2014; Lindhjem et al., 2004; Mellios. et al., 2019; USEPA, 2015). 

McDonald et al. (2018) found that NOx emissions from NEI estimated from the U.S. EPA’s MOVES are 
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under-estimated, leading to a failure of prediction of high ozone days (8-hr max ozone>70 ppb). (McDonald 

et al., 2018) 170 

The dependency of mobile emissions on local meteorology can vary by vehicle types (light-duty, heavy-duty, 

truck and bus), fuel types (gasoline, diesel, hybrid, and electric), road types (interstate, freeway, local roads), 

processes (vehicle start-up, running exhaust, break-tire wear, hot soak, and extended idling), vehicle speed 

for onroad vehicles, hour of day for off-network vehicles, as well as by pollutants such as CO, NOX, SO2, 

NH3, VOC, Particulate Matter (PM). Figure 1 shows the dependency of MOVES emission factors of CO, 175 

NOx, VOC, and PM2.5 from gasoline-fueled vehicles on ambient temperature from onroad and off-network, 

respectively. All pollutant emissions vary with the temperature, particularly under lower speed. The CO, 

VOC and NOx emissions increase with the temperature while opposite relationship is suggested between 

PM2.5 emissions and temperature, implying the complexity of meteorology impacts on different pollutant 

emissions. For off-network emissions from gasoline-fueled vehicles, CO, NOx and PM2.5 show negative 180 

correlations with temperature, while the VOC exhibits nonlinear response to the temperature variation. The 

largest meteorology dependency occurs in daytime when emissions are the greatest across a day. Further 

detailed meteorology dependency of MOVES emission factors on local meteorology can be found in Choi et 

al., 2017.  

2.3 SMOKE-MOVES Integration Tool 185 

In 2010, U.S. EPA introduced the process-based onroad mobile emissions model, MOVES, which is a state-

of-the-science MySQL database-driven software for calculating bottom-up vehicular emissions from onroad 

and off-network. Off-network emission processes (e.g., parked engine-off, engine starts, and idling, and fuel 

vapor venting) in MOVES are hour-dependent due to vehicle activity assumptions built into the MOVES 

model; the emission rate in a unit of grams/mile/hour depends on both hour of the day and temperature. 190 

Onroad emission processes (e.g., running exhaust, crankcase running exhaust, brake wear, tire wear, and on-

road evaporative), on the other hand, do not depend on the hour but are expressed in grams/mile.  

MOVES is approved for use in official state implementation plan (SIP) submissions to EPA and for 

conformity emissions inventory development outside of California. Furthermore, it can be used to estimate 

onroad vehicle emissions for a variety of different purposes: to evaluate the national and local emissions 195 

trends, to compare different emission scenarios, to analyze the benefits from mobile source control strategies, 

and to provide inputs for air quality modeling. Although MOVES estimates of mobile emissions include the 

dependence on vehicle activities and simulated hourly meteorology, its computational requirements are 

prohibitive in real-time air quality forecasting applications. To overcome these issues, the SMOKE-MOVES 

tool was developed by integrating MOVES emission factor (EF) outputs with the SMOKE modeling system 200 

(Baek, 2010), with the objectives of reducing processing time, and improving the accuracy of mobile 

emissions for air quality modeling. The tool allows hourly mobile emissions estimates based on vehicle 

activity inventories (i.e., miles traveled, population, and operating hours), MOVES EFs (a function of vehicle 

type, road type, and local meteorology), and simulated hourly ambient temperatures, and humidity. It first 

estimates spatially and temporally averaged county-level hourly meteorological inputs (temperatures and 205 

humidity). It then prepares driver and post-processing scripts to set up and run MOVES to generate county-

specific MOVES EF lookup tables (LUT), and to sort them by average vehicle speed, ambient temperatures, 

humidity, operating hours, day of week, and/or hour of the day. Finally, the tool runs SMOKE to estimate air 

quality model-ready emissions using the MOVES EF LUTs with hourly meteorological inputs. 

Based on the latest 2017 National Emissions Inventory (NEI) Emissions Modeling Platform (EMP) (USEPA, 210 

2022), the county-specific individual MOVES EF LUT file size can range from 60MB up to 150MB, and 
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processing so many MOVES EF LUT files from the targeted counties in our modeling domain (e.g., 

12kmx12km grid over U.S. Continental) require significant computational resources, such as memory and 

storage spaces.  

Development of CMAQ-MetEmis Coupler One of the future key advances for current CMAQ in NAQFC 215 

application is developing a unified forecast system (UFS) with dynamically coupled process-based emissions 

modeling to provide atmospheric chemicals feedbacks to climate and meteorology, and to boost the air 

quality forecast modeling applications in seasonal-to-sub seasonal predictions. While biogenic emissions, bi-

directional NH3 from fertilizer applications, and point-source plume rise are dynamically coupled in CMAQ 

“inline” as a part of NAQFC, these known meteorology-induced emissions sectors have little or no 220 

accounting of meteorological impacts in current operational chemical and aerosol forecasts but are 

represented with static, no-weather-aware annual or monthly county total emissions and standard 

monthly/weekly/daily temporal allocation profiles to disaggregate them on finer time scales for the hourly 

air quality forecasts. It often results in poor forecasting performance due to the poor spatiotemporal 

representations of precursor pollutants during high ozone and PM2.5 episodes (Tong et al., 2012). 225 

In this study, we developed the meteorologically-induced emissions coupler module (MetEmis)  within the 

CMAQ modeling system to enhance the current NAQFC with the weather-aware emissions modeling 

capability without any additional computational burden to the system. Pouliot (2005) indicated that the main 

obstacle to implementing weather-aware emissions into air quality simulation is a significant computational 

resource requirement, especially for air quality forecasting applications. To address these potential 230 

shortcomings (computational time and memory requirements), we first implemented a new feature in the 

SMOKE v4.8.1 modeling system to generate the temperature-specific pre-gridded hourly emissions called 

“MetEmis_TBL”, and then store them into the pseudo-layer structure for easy and fast access for later 

weather-aware emissions estimations (Figure 2). Each pseudo-layer holds the pre-gridded hourly emissions 

based on pre-defined temperature bins (e.g., 5oC, 10oC, 15oC, and so on).   235 

There are two ways to process the “MetEmis_TBL” emissions input file to develop weather-aware emissions: 

(a) “SMOKE-MetEmis”, and (b) “CMAQ-MetEmis”. The “SMOKE-MetEmis” is an “offline” approach 

based on the updated SMOKE modeling system with the “MetEmis_TBL” that can dynamically estimate 

weather-aware gridded hourly emissions with the forecast meteorology prior to the CMAQ simulations 

(Figure 2a). The updated Mrggrid utility tool from the SMOKE will first read and process the 240 

“MetEmis_TBL” emissions file with the forecast meteorology as a part of the emissions processing step prior 

to the CMAQ simulations. However, the “CMAQ-MetEmis” is a true “inline” approach based on the CMAQ 

version 5.3.1 with a new dynamic emission coupler module called “MetEmis” that can internally generate 

weather-aware emissions with “MetEmis_TBL” within the CMAQ simulations (Figure 2b). While both 

approaches generate the same CMAQ ready gridded weather-aware hourly emissions, the “CMAQ-MetEmis” 245 

approach will not only require any offline emissions modeling using SMOKE, but also expedite its 

computational processing time with the CMAQ parallelized simulations. 

3. Results 

In order to evaluate the impact of the “MetEmis” approach, the CMAQ modeling system is performed for 

two different scenarios, “MetEmis” and “Base”, respectively for the winter (January) and winter (July) 250 

seasons of 2019. First, we analyze the response of NOx, VOC, NH3, and PM2.5 emissions to the dynamic 

“inline” SMOKE-MetEmis approach. Then, the evaluation of the CMAQ-MetEmis air quality modeling 

system is performed by the comparison of the simulated ambient concentrations of NO2, O3, and PM2.5 with 
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the observations where the most of meteorology-induced emissions are impacted by the meteorology 

compared to the “offline” static approach (i.e, Base).  255 

 

3.1 Computational Efficiency 

While estimating meteorologically-induced onroad mobile emissions using local meteorology accurately 

provides the emissions to CTM, the current “offline” SMOKE-MOVES integration tool approach has faced 

many challenges, such as computational burdens, and the data portability and distributions due to the size of 260 

data files and computationally expensive I/O data processing. Accurately generating the onroad mobile 

emissions for the U.S. continental using MOVES onroad emission model requires a significant amount of 

computational resources as well as the processing time. It approximately takes 12 computing hours to 

generate one county MOVES EF LUT table per month using MOVES (Baek et al., 2010). Simulating over 

3,100 counties in the U.S. continental (CONUS) for 12 calendar months (>37,400 MOVES simulations) will 265 

require a tremendous amount of computational resources and time. Thus, U.S. EPA has adopted the 

representative county approach to reduce the number of counties as well as the number of modeling months. 

Each representative county was classified according to its state, altitude (high or low), fuel region, the 

presence of inspection and maintenance programs, the mean light-duty age, and the fraction of ramps (CRC, 

2019). A total of 296 representative counties for CONUS and 38 for Alaska, Hawaii, Puerto Rico, and the 270 

US Virgin Islands (USEPA, 2022). Each representative county holds two fuel months to represent all 12 

calendar months. Based on the 2017 NEI EMP, the county-specific individual MOVES EF LUT file size can 

range from 60MB up to 150MB, and there are a total of 668 MOVES EF LUT input files which represent 

3,100 counties in the U.S. for an entire modeling year (334 LUT files per fuel month). 

To generate one day (25 hourly time steps) CMAQ-ready gridded hourly emissions, SMOKE needs to read 275 

and process 334 MOVES EF LUT as well as many other SMOKE-ancillary input files such as VMT activity, 

temporal profiles, chemical speciation profiles, spatial surrogates, and so on. The most computational 

resources are consumed in I/O (inputs and outputs) of huge amount of data files while it processes the 

complex datasets. Table 2 shows the estimated computational resources and time per each onrad mobile 

sector (e.g., RatePerDistance (RPV), RatePerVehicle (RPV), and RatePerHour (RPH)). Among the mobile 280 

sectors, RPD and RPV are the slowest sectors processed in the SMOKE modeling system. 

Based on the latest 2017 NEI EMP, CMAQ-ready gridded daily emissions in our modeling domain (e.g., 

12kmx12km grid over U.S. Continental) requires approximately 1.9 hours per day (RPD: 90 minutes, RPV: 

18 minutes, and RPH: 1 minute) to generate the complete set of onroad mobile daily emissions including 

RPD, RPV and RPH modes. It may require over 638.5 hours (~29 days) of computational time to generate 285 

CONUS gridded hourly emissions for 365 days.  While the CMAQ-MetEmis “inline” approach (Figure 2b) 

does not cause much computational processing time since the I/O of NetCDF/IOAPI binary format 

MetEmis_TBL input file in the CMAQ modeling system is instantaneous. There was less than 1 minute per 

day of CMAQ computational time with 96 CPUs parallel processing.  

The SMOKE-MetEmis can generate a single MetEmis_TBL emissions input file that holds the 25 290 

temperature-bins gridded hourly emissions for 334 representative counties for one fuel month from 0oF to 

125oF temperature (25 bins with 5oF increment). Correction equations for humidity are applied to estimate 

grid-cell-hour adjustment factors for NOx emissions by fuel type (USEPA, 1997). The size of MetEmis_TBL 

input file that can represent the 334 MOVES LUTs files per fuel month with 25 temperature bins is 

approximately 16GB which is significantly smaller than the size for 334 MOVES LUTs files, ~ 62.8GB. 295 
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Approximately 6 hours are required to generate the MetEmis_TBL file once with SMOKE per fuel month, 

prior to the CMAQ-MetEmis simulations. 

 

3.2 Weather-Aware Mobile Emissions 

The huge computational burden of traditional “offline” SMOKE-MOVES approach prohibits its usage in 300 

providing real-time estimates of mobile emissions which might be significantly driven by the weather 

changes, resulted in considerable uncertainties in predicting emissions and air quality. The spatial monthly 

total difference plots of VOC and NOx between “Base” and “MetEmis” from Figure 3 clearly show that most 

of the emission differences caused by local meteorology occur from major interstate roads and metropolitan 

cities (e.g., New York, Detroit, Chicago, Los Angeles, Phoenix, and Atlanta), where onroad mobile emissions 305 

contribute the most. Especially, the most differences in VOC were occurred over California region in July 

2019, probably because the original temporal profiles assumed in “Base” are not suitable to represent the real 

condition influenced by the weather. The January and July VOC emissions from the “Base” scenario were 

higher by over 8% and 20% than the ones from the “MetEmis” scenarios, respectively, indicating that current 

NAQFC-ready onroad mobile emissions (no-weather-aware) are significantly over-representing the VOC 310 

emissions compared to the weather-aware VOC dynamically estimated by MetEmis.  

Unlike the “Base” approach, the “MetEmis” approach estimates hourly emissions by multiplying the 

estimated hourly vehicle mileage traveled (VMT) in the unit of miles/hour with inventory pollutant emission 

rates (unit of grams/miles), which are a function of local meteorology (e.g., ambient temperature and 

humidity). The “MetEmis” emissions can enhance their spatiotemporal representations of onroad mobile 315 

sources. However, the hourly VMT activity data is estimated using the same temporal profiles used in the 

“Base” hourly emissions. Thus, both onroad emissions follow similar weekly and daily patterns with some 

hourly variations based on local meteorological conditions. As presented in Figure 4 which compares the 

hourly domain total TOG (Total Organic Gases), NOx, and PM2.5 emissions between the “Base” and the 

“MetEmis” approach, the statically estimated “Base” hourly emissions (colored blue) clearly show the 320 

repeated weekly patterns within the same month due to the usage of the static weekly temporal profiles, while 

the “MetEmis” (colored in red) display irregular hourly patterns due to the impacts of local hourly 

meteorology.  

Due to the influence of local meteorology (i.e., ambient temperature and relative humidity), the onroad 

running exhaust/evaporative emissions from RPD and the off-network evaporative emissions from RPV 325 

modes shows a moderate decrease of TOG and a slight increase of NOx (> 4% increase) over the entire 

domain due to low ambient and humidity condition during the winter season (January), according to 

“MetEmis” estimates. The most important enhancement in “MetEmis” approach is that it allows modelers to 

simulate NAQFC-ready weather-aware onroad mobile emissions. More important, the daily differences are 

also noticeable in “MetEmis” approach within one month, as higher TOG and PM2.5 are shown in late January 330 

due to the increased temperature, while the “Base” approach failed to predict such variation. Such 

spatiotemporal enhancements of onroad mobile emissions predicted by “MetEmis”, especially near 

metropolitan regions, would benefit the NAQFC.  

 

3.3 Effects of Weather-Aware Mobile Emissions on simulations 335 

This study investigated the response of NO2, O3 and PM2.5 to the meteorology-induced mobile emission 

changes by simulating air quality under two scenarios (Base and MetEmis). The sensitivity of air pollutant 

concentrations to these meteorology-induced emission sources was performed and analyzed in this section. 

https://doi.org/10.5194/gmd-2022-253
Preprint. Discussion started: 25 January 2023
c© Author(s) 2023. CC BY 4.0 License.



 9 

The monthly statistical modeling evaluation metrics for these two simulations (Base and MetEmis) over the 

CONUS domain are provided in Table 3. The correlation coefficient (CORR) of O3 is 0.51 for both 340 

simulations, and they have the same normalized mean bias and errors (NMB and NME), while the relative 

mean square error (RMSE) of Base (7.03 ppb) is slightly higher than that of MetEmis (7 ppb). The 

simulated NO2 shows the best correlations (0.64) among these three pollutants in January, however, its 

RMSE, NMB, and NME are the largest. The PM2.5 simulation didn’t reproduce the variability very well 

with a lower CORR of 0.46, but it presents the best RMSE and moderate NMB/NME. In July, the CORRs 345 

of O3 improve from 0.51 to 0.64, while the RMSEs are also increasing because of intense concentration in 

summer. The NO2 and PM2.5 have the opposite pattern compared to that of O3 with decreased CORR (0.51 

and 0.38, respectively) and improved biases and errors, except the NME of NO2. Over the entire modeling 

domain, both simulations show quite similar modeling performances against the observations, with the 

difference generally below 1%.  This is mostly attributable to the spatial pattern of emissions which is 350 

primarily concentrated in urban areas. The most impacts of MetEmis emissions are shown over 

metropolitan cities where mobile emissions play a critical role in their local air quality. 

Figure 5 shows the monthly average NO2, O3, and PM2.5 concentrations from the Base scenario and the 

monthly average difference between the Base and MetEmis scenarios in July 2019. The spatial distributions 

of simulated NO2 present a close pattern with those of NOx emission in both two months, demonstrating the 355 

effect of local NOx emission on the NO2 activities. The NO2 concentration in July is lower than January, 

which is caused by the stronger NO2 photolysis and ventilation. In January, the NO2 simulated by MetEmis 

showed higher concentration over the domain with more than 0.2 ppb larger over urban areas because of 

the increased NOx emission after adjustment. In comparison, the monthly simulated NO2 concentrations 

with and without emission adjustment are much closer in July, the emission adjustment makes the 360 

concentration increase in the east while a decrease in the west. Compared to NO2, the secondary O3 and 

PM2.5 formation chemical reactions involve complex nonlinear processes under various meteorological 

conditions and precursor emissions. Despite their complexity, there are strong correlations between their 

nonlinear responses and precursor emission changes. 

The O3 concentration is generally below 36 ppb in most areas in January because of the cold weather and 365 

weak photolysis process, while it presents high over the mid-western US which is caused by the higher 

altitude over the Rocky Mountains area. The O3 significantly increases in July with average concentration of 

43.9 ppb, which is 10 ppb larger than that in January. In July, the northeastern US becomes the hot spot zone 

as the local anthropogenic emission and pollution transport are both strong. In the meanwhile, the O3 also 

concentrated over the water, such as Great Lake and northeastern coastal areas. The most of ozone increase 370 

occurred around the surrounding regions of metropolitan cities like Chicago, IL, Atlanta, GA, Denver, CO 

and Pheonix, AZ, where both NOx and VOC emissions are slightly increased during July 2019 (Figure 3). 

However, San Jose area shows a significant decrease of ozone during the summer in 2019 due to the higher 

VOC estimations from NEI (Base) compared to the ones from MetEmis scenario (Figure 3).  

The PM2.5 simulation has similar patterns in January and July with more particles concentrating in the east. 375 

The southwestern areas show less particulate pollution as the emission we use does not include natural 

sources such as dust storms and wildfires. The results from MetEmis present slightly higher PM2.5 in the east 

because of the increased primary PM2.5 emission. In addition, a decreased PM2.5 concentration is noted in 

California. This may attribute to the less generated secondary aerosols as the VOC emission is significantly 

reduced after adjustment.  380 
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3.4 Evaluation on Modeling Performance 

This study further examines the influence of meteorology-induced mobile emission changes on modeling 

performance which is particularly important for the air quality forecasting in NAQFC. 10 cities with the 

most changes in emissions are selected for comparison, as shown in Figure 6. In general, noticeable 

improvement is found in NO2 simulation with increase R2 in all 10 cities except Detroit. San Jose and 385 

Atlanta exhibits the largest improvement in NO2 simulation. Apparently, the MetEmis successfully 

captured daily variations of mobile emissions, resulted in an improved temporal correlation. Meanwhile, 

the RMSEs were reduced in most of cities (8 out of 10), suggesting the simulated biases can also be 

eliminated with MetEmis. 

Compared to NO2, changes in O3 and PM2.5 are smaller due to the complex reactions. However, 390 

improvement is also found in summer with increased R2 and reduced RMSE in more than 70% cities, 

though less improvement is suggested in winter. We analyzed a few episodes with the largest changes for 

O3 and PM2.5 to better demonstrate such improvement. 

 

Ozone Episodes Analysis 395 

Based on the July 2019 CMAQ simulation between the Base and MetEmis cases, we identified the 

locations where the largest changes in surface ozone occurred. Especially, in July 2019, we witnessed a 

significant decrease in ozone over San Jose, CA at 1:00 PM local time on July 24, 2019, while the most 

increase in ozone occurred over Chicago, IL at 11:00 AM on July 5, 2019 (Table 4). Thus, we investigated 

these two episodes to understand what the main drivers of these behaviors are. 400 

 

Largest Ozone Increase Episode 

Figure 7 shows the spatial ozone concentrations and the differences over Chicago region between the Base 

and MetEmis scenarios at 11AM LST on July 5, 2019. While the highest ozone occurred around the south 

of Michigan lake in both scenarios (Figure 7a), the largest ozone increase (~7ppb) is shown in the middle 405 

of Michigan lake, where unfortunately there is no AQS monitoring location (Figure 7b). To understand the 

cause of these ozone changes, we examined the differences of NOx and VOC emissions between Base and 

MetEmis scenarios. The increase of VOC emissions from the MetEmis scenario in the early morning 

(3LST-9LST) over the VOC limited Chicago, IL region seems to be the main driver of a significant 

increase of ozone (Figure 8). The detailed information on VOC and NOx concentration changes on July 5th, 410 

2019, is listed in Table 5. In the early morning, there was a decrease in NOx concentration, and an increase 

in VOC concentrations over Chicago area. Due to no monitoring location available over the lake, we were 

not able to properly perform the modeling evaluation statistics during the largest ozone increase.  

 

Largest Ozone Decrease Episode 415 

There was more than an 80ppb ozone decrease over San Jose, CA at 11LST on July 24th, 2019.  To 

understand the cause of this significant decrease, we performed the analysis of precursor emissions changes 

during the episode period. The colored green AQS locations are selected for the ozone concentration 

analysis, while the red ones are for the PM2.5 monitoring locations (Figure 9a). Figure 9b shows the 

modeled hourly ozone concentrations (maximum, minimum, and mean) and AQS observations over the 420 

blue box targeted region from Figure 9a.  Figure 9b and Figure 10 indicate that the maximum ozone values 

from “Base” scenario clearly show an overestimated ozone over San Jose, CA downwind region, while the 

MetEmis case shows a significant improvement in maximum ozone concentration during the daytime.  The 
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main driver of this significant ozone change over the San Jose targeted area is due to the substantial 

reduction in VOC emissions in MetEmis from Base (Figure 11a). Statistics of NOx and VOC 425 

concentrations from CMAQ in Table 6 show consistent findings.  

 

Largest PM2.5 Decrease Episodes 

Along with the significant ozone decrease in July, 2019, there was a significant PM2.5 decrease from 

CMAQ-MetEmis simulation from 42.5g/m3 (Base) to 25g/m3 at 10LST on January 3, 2019. 430 

Approximately 17.5 g/m3 (>41%) PM2.5 decrease was witnessed in CMAQ-MetEmis simulations (Figure 

11). The CMAQ-MetEmis simulation shows a significant improvement in modeled PM2.5 concentration, 

compared to the one from the AQS monitoring locations from 8a (Figure 12a). The main cause of this 

PM2.5 decrease in CMAQ-MetEmis is mainly a significant decrease in primary PM2.5 and VOC emissions 

(Figure 13). Primary hourly PM2.5 emissions from MetEmis scenario were significantly lowered than the 435 

ones from Base scenario, approximately a maximum of 20kg/hour from 3LST to 9LST on January 3, 2019. 

4. Conclusions 

To address the limitation of traditional estimation for onroad vehicle emissions, this study developed a novel 

method (i.e., MetEmis) by dynamically coupling the meteorology-induced onroad emissions with simulated 

meteorological data in the air quality modeling system, which significantly improves both computational 440 

efficiency and accuracy. The computational time for processing one day onroad emission data is substantially 

reduced from 1.9 hours offline to less than 1 minute inline, enabling the onroad emission estimates 

simultaneously coupled with the meteorology forecasting. Overall, the MetEmis corrected the low-biases of 

NOx and primary PM2.5 emissions domain wide, and high-biases of VOC emissions in California. The 

MetEmis also successfully captured the temporal variation of onroad vehicle emissions, resulted in an 445 

improved simulated NO2, O3 and PM2.5 concentrations with more agreement with observations compared to 

the ones using static temporal profiles. Particularly, the simulated NO2 concentration exhibits noticeable 

improvement with increased R2 and decreased RMSEs in most cities. The simulated O3 and PM2.5 

concentrations were also improved, particularly in summer. 

The newly developed CMAQ-MetEmis model demonstrates the importance of dynamic-coupling emissions 450 

and meteorological forecasting. While this study only focused on the onroad emissions, other meteorology-

induced sectors such as residential combustions and agricultural livestock are planned to be included in the 

MetEmis development to well represent the meteorological influence on all meteorologically-induced 

anthropogenic emissions.  

 455 
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Tables 
 

Table 1. CMAQ modeling domain and configurations. 

 Base MetEmis 

Horizontal Resolution 12km x 12km 

Meteorology 

WRFv4.0 with GFS acting as ICs/BCs, RRTMG short/long wave 

scheme, Noah-MP land-surface scheme, YSU boundary layer 

scheme 

 

Boundary Condition 
GEOS monthly product 

 

Initial Condition CMAQ restart file 

Chemistry CMAQv5.3.2 CB6r3 AE7 

Emissions 
2017 NEI: Onroad monthly 

emissions 

2017 NEI: Onroad 

Meteorology-induced 

emissions 

 

 610 

 

 

Table 2. The required computational memory and time in the SMOKE modeling system. 

Sector 
Individual File 

Size 

Total File Size 

(668 counties) 

CPU Memory 

Usage (GB) 

CPU Computing 

Time* 

RPD 50-160 MB 62.8 GB 10~20 ~ 90 mins/day 

RPV 26-89 MB 34.5 GB 5~10 ~ 18 mins/day 

RPH 7-94 KB 43.6 MB 1~2 ~ 1 mins/day 

* The specification of CPU is Intel Xeon Gold 6240R @ 2.4GHz 

 615 

 

 

Table 3. Statistical metrics between observed and simulated O3, NO2 and PM2.5 in January and July, 2019 

over contiguous United States 

 January 2019 July 2019 

 O3 NO2 PM2.5 O3 NO2 PM2.5 

 Base MetEmis Base MetEmis Base MetEmis Base MetEmis Base MetEmis Base MetEmis 

CORR 0.51 0.51 0.64 0.64 0.46 0.46 0.64 0.64 0.51 0.51 0.38 0.38 

RMSE 7.03 7.00 8.33 8.27 5.72 5.76 9.56 9.51 5.69 5.67 5.03 5.04 

NMB -0.01 -0.01 -0.32 -0.30 0.10 0.11 -0.01 -0.01 -0.15 -0.15 -0.05 -0.05 

NME 17% 17% 52% 52% 46% 47% 17% 17% 62% 62% 40% 40% 

 620 
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 625 

 

 

 

Table 4. The largest differences of ozone episodes in July 2019 over the U.S. 

Episodes Date @ Time Base (ppb) MetEmis (ppb) Location 

Largest Increase Jul 5, 2019 @ 1PM 78.3 85.9 (+7.1) Chicago, IL 

Largest Decrease Jul 24, 2019 @ 11AM 112.9 31.0 (-81.9) San Jose, CA 

 630 

 

Table 5. Summary of precursor (NOx and VOC) concentrations in the morning before the largest ozone 

increase episode at 14LST on July 5th, 2019 over Chicago, IL. 

Jul 5th, 

2019 

NOx (ppb) VOC (ppbC) 

Time Base MetEmis Diff (M-B) Time Base MetEmis Diff (M-B) 

Mean 5-11AM 8.4 8.6 0.2 5-11AM 62 66 4.0 

Max 6-7AM 18.9 20.7 1.8 6-7AM 101 121 20.0 

Min 6-7AM 8.5 8.2 -0.3 10-11AM 74 73 -1.0 

 

 635 

 

 

 

Table 6. Statistics of largest ozone decrease episode (July 24th, 2019) over San Jose, CA. 

 640 

  

Jul 24th, 

2019 

NOx (ppb) VOC (ppbC) 

Time Base MetEmis Diff (M-B) Time Base MetEmis Diff (M-B) 

Mean 3-9AM 5.8 6.8 1.0 3-9AM 184 35 148 

Max 10-11AM 9.0 22.0 13.0 8-9AM 1263 68 -1195 

Min 11-12pM 10.8 10.6 -0.2 12PM-1AM 7.8 7.3 -0.5 
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 650 

 

 
 

Figure 1. Meteorology-dependency of CO, VOC, NOx, and PM2.5 emissions from gasoline-

fueled light-duty vehicles by average speed bin (a), and the off-network by the hour of day (b). 

(a) on road by speed bin (b) off-network by the hour of day 

Figure 2. Meteorological-Induced Emissions coupler module "MetEmis" with air quality 

modeling system: a) "SMOKE-MetEmis", and b) "CMAQ-MetEmis". 

(b)

) 

(a)

) 
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  655 

Figure 3. Spatial comparison of monthly total emissions of VOC, NO, and PM2.5. The colors indicate 

the MetEmis is larger than Base (red) or smaller (blue) for  (a) VOC in January, (b) VOC in July, (c) 

NOX in January, (d) NOx in July,(e) PM2.5 in January and (f) PM2.5  in July. 

(c)

) 

(d)

) 

(e)

) 

(f)

) 

(b)

) 

(a)

) 
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Figure 4. Temporal comparisons of daily domain total emissions of  (a) Total Organic Gas 

(TOG) in January, (b) TOG in July, (c) NOX in January, (d) NOx in July,(e) PM2.5 in January and 

(f) PM2.5  in July from the Base (blue line) and MetEmis scenarios (red line). 

(a) (b)

) 

(c)

) 

(d)

) 

(e)

) 

(f)

) 
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 665 

 January July 

 (a) Base (b) ∆(MetEmis-Base) (c) Base (d) ∆(MetEmis-Base) 
NO2 

    
O3 

    
PM2.5 

    
 

Figure 5. spatial distribution of NO2, O3 and PM2.5 concentrations and difference figures: (a) January 

averaged concentrations from Base scenario, (b) the differences between Base and MetEmis scenarios in 

January, (c) July averaged concentrations from Base scenario, and (d) the differences between Base and 

MetEmis scenarios in July 670 

 

 

 

https://doi.org/10.5194/gmd-2022-253
Preprint. Discussion started: 25 January 2023
c© Author(s) 2023. CC BY 4.0 License.



 23 

January 

 (a) RMSE (b) R 

NO2 

  

O3 

  

PM2.5 

  

July 

 (a) RMSE (b) R 

NO2 

  

-8%

-4%

0%

4%

8%

0

20

40

∆
R

M
SE

 in
cr

%

R
M

SE
 in

 b
as

e

RMSE delta

-10.0%

-5.0%

0.0%

5.0%

10.0%

0

0.5

1

∆
R

 in
cr

 %

R
 in

 b
as

e

R delta

-8%

-4%

0%

4%

8%

0

20

40

∆
R

M
SE

 in
cr

%

R
M

SE
 in

 b
as

e

RMSE delta

-10.0%

-5.0%

0.0%

5.0%

10.0%

0

0.5

1

∆
R

 in
cr

 %

R
 in

 b
as

e

R delta

-8%

-4%

0%

4%

8%

0

20

40

∆
R

M
SE

 in
cr

%

R
M

SE
 in

 b
as

e

RMSE delta

-5.0%

0.0%

5.0%

0

0.5

1

∆
R

 in
cr

 %

R
 in

 b
as

e

R delta

-4%

-2%

0%

2%

4%

0

10

20

∆
R

M
SE

 in
cr

R
M

SE
 in

 b
as

e

MB delta

-40.0%

-20.0%

0.0%

20.0%

40.0%

0

0.5

1

∆
R

 in
cr

 %

R
 in

 b
as

e

R delta

https://doi.org/10.5194/gmd-2022-253
Preprint. Discussion started: 25 January 2023
c© Author(s) 2023. CC BY 4.0 License.



 24 

O3 

  

PM2.5 

  

 

Figure 6. Comparison of model performance in simulating NO2, O3 and PM2.5 concentrations between Base 675 

and MetEmis scenarios. The columns panels shows the different model evaluation metrics in January 

(panel a and b) and July (panel c and d). The rows present different species including NO2, O3, and PM2.5. 

RMSE is Root-mean-square deviation, R is correlation coefficient. delta is (MetEmis - Base)/Base; when 

∆R > 0 and ∆RMSE < 0, indicate the improvement in MetEmis. 

* NO2 in January in Denver is -0.002, increased to 0.008 with MetEmis; Observed O3 data is missing in 680 

Chicago and Atlanta in January. 
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Figure 7. Base hourly ozone (ppb) (a) and the hourly ozone difference (MetEmis-Base) (b) at 

14LST on July 5th, 2019. Black color indicates the concentration above the color scale 

maximum (120 ppb) 

Figure 8. Spatial differences of NOx (a) and VOC (b) emissions in early morning (3AM-9AM) 

on Jul 5th, 2019. 

(a) (b)

) 

(a) (b)

) 
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Figure 9. (a) U.S. EPA's Air Quality System (AQS) ozone and PM2.5 monitoring locations, 

and (b) diurnal variation of ozone (maximum, mean and minimum) on July 24, 2022 over San 

Jose, CA. The base map layer of this figure was made by Esri  (Esri, 2013) 

 

Figure 10. Base hourly ozone concentration (ppb) (a) and the hourly ozone difference (MetEmis-

Base) (b) at 11LST on July 24th, 2019. 

 

(a) (b)

) 
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Figure 11. Spatial differences of NOx (a) and VOC (b) emissions from 3LST to 9LST on July 24, 

2019 over San Jose, CA. 

Figure 12. (a)Diurnal variation of PM2.5 (maximum, mean and minimum) concentrations over 

San Jose targeted region, and (b) the spatial difference of PM2.5 at 10LST on January 3, 2019. 

(a) (b)

) 

(a) (b)

) 
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 730 

 

 

Figure 13. Spatial difference of PM2.5 (a) and VOC (b) emissions over San Jose region from 

3LST to 9LST on January 3, 2019.  

(a) (b)

) 

https://doi.org/10.5194/gmd-2022-253
Preprint. Discussion started: 25 January 2023
c© Author(s) 2023. CC BY 4.0 License.


